feat(problem): 12 - highly divisible triangle number
This commit is contained in:
parent
8947bdd61c
commit
5d6c47106d
2 changed files with 49 additions and 2 deletions
|
@ -9,7 +9,7 @@ All of the solutions here are written in rust. [main.rs](src/main.rs) is the hom
|
|||
|
||||
## Challenge Completion
|
||||
|
||||
### <!-- completed -->11<!-- completed --> out of 100 public challenges completed.
|
||||
### <!-- completed -->12<!-- completed --> out of 100 public challenges completed.
|
||||
|
||||
- [x] 1 - [Multiples of 3 or 5](src/bin/1.rs)
|
||||
- [x] 2 - [Even Fibonacci numbers](src/bin/2.rs)
|
||||
|
@ -22,7 +22,7 @@ All of the solutions here are written in rust. [main.rs](src/main.rs) is the hom
|
|||
- [x] 9 - [Special Pythagorean triplet](src/bin/9.rs)
|
||||
- [x] 10 - [Summation of primes](src/bin/10.rs)
|
||||
- [x] 11 - [Largest product in a grid](src/bin/11.rs)
|
||||
- [ ] 12 - Highly divisible triangular number
|
||||
- [x] 12 - [Highly divisible triangular number](src/bin/12.rs)
|
||||
- [ ] 13 - Large sum
|
||||
- [ ] 14 - Longest Collatz sequence
|
||||
- [ ] 15 - Lattice paths
|
||||
|
|
47
src/bin/12.rs
Normal file
47
src/bin/12.rs
Normal file
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
Problem 12 - Highly divisible triangular number
|
||||
|
||||
The sequence of triangle numbers is generated by adding the natural numbers. So the 7 th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
Let us list the factors of the first seven triangle numbers:
|
||||
1 : 1 3 : 1,3 6 : 1,2,3,6 10 : 1,2,5,10 15 : 1,3,5,15 21 : 1,3,7,21 28 : 1,2,4,7,14,28
|
||||
We can see that 28 is the first triangle number to have over five divisors.
|
||||
What is the value of the first triangle number to have over five hundred divisors?
|
||||
*/
|
||||
|
||||
fn factors(number: usize) -> Vec<Vec<usize>> {
|
||||
let max = (number as f64).sqrt() as usize;
|
||||
let mut factors: Vec<Vec<usize>> = vec![vec![1, number]];
|
||||
let is_even = number % 2 == 0;
|
||||
|
||||
for current_factor in (if is_even {2} else {3})..(max + 1) {
|
||||
if number % current_factor != 0 {
|
||||
continue;
|
||||
}
|
||||
|
||||
factors.push(vec![current_factor, number / current_factor]);
|
||||
}
|
||||
|
||||
return factors;
|
||||
}
|
||||
|
||||
fn first_triangle_with_n_divisors(n: usize) -> usize {
|
||||
let mut i = 1;
|
||||
|
||||
loop {
|
||||
let triangle = (i * (i + 1)) / 2;
|
||||
let factors = factors(triangle);
|
||||
|
||||
if factors.len() * 2 > n {
|
||||
return triangle;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let value = first_triangle_with_n_divisors(500);
|
||||
|
||||
println!("The first triangle number with over 500 divisors is {value}");
|
||||
}
|
Loading…
Reference in a new issue