2021-08-23 00:49:58 +00:00
|
|
|
import requests
|
|
|
|
import pandas as pd
|
|
|
|
from bs4 import BeautifulSoup
|
|
|
|
import pycountry
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
|
|
|
|
# Fetch and parse the website
|
|
|
|
response = requests.get('https://www.statista.com/statistics/268136/top-15-countries-based-on-number-of-facebook-users/')
|
|
|
|
content = response.content
|
|
|
|
soup = BeautifulSoup(content, 'html.parser')
|
|
|
|
|
|
|
|
# Find all of the data points
|
|
|
|
tds = soup.select('#statTableHTML td')
|
|
|
|
|
|
|
|
# Frame the data
|
|
|
|
data = []
|
|
|
|
|
|
|
|
def population(country):
|
|
|
|
countryCode = pycountry.countries.search_fuzzy(country)[0].alpha_3
|
|
|
|
res = requests.get('https://restcountries.eu/rest/v2/alpha/' + countryCode)
|
2021-08-23 13:04:45 +00:00
|
|
|
return int(json.loads(res.content)['population'])
|
2021-08-23 00:49:58 +00:00
|
|
|
|
|
|
|
for td1, td2 in zip(tds[::2], tds[1::2]):
|
|
|
|
frame = {}
|
|
|
|
frame['country'] = td1.text.strip()
|
2021-08-23 13:04:45 +00:00
|
|
|
frame['active'] = int(td2.text.strip()) * 1000000
|
2021-08-23 00:49:58 +00:00
|
|
|
frame['population'] = population(frame['country'])
|
2021-08-23 13:04:45 +00:00
|
|
|
frame['percentActive'] = (frame['active'] / frame['population']) * 100
|
2021-08-23 00:49:58 +00:00
|
|
|
data.append(frame)
|
|
|
|
|
|
|
|
# Save the data
|
|
|
|
df = pd.DataFrame(data)
|
|
|
|
df.to_csv(os.path.dirname(os.path.realpath(__file__)) + '/fbPercentActive_res.csv')
|