2024-10-09 17:02:43 +00:00
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
double power(double base, double exponent) {
|
|
|
|
double out = base;
|
|
|
|
|
|
|
|
for (int i = 1; i < exponent; i++) {
|
|
|
|
out *= base;
|
|
|
|
}
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Euclid algorithm
|
|
|
|
int greatestCommonDivisor(int a, int b) {
|
2024-10-09 17:02:43 +00:00
|
|
|
int currentA = abs(a);
|
|
|
|
int currentB = abs(b);
|
2024-10-09 17:02:43 +00:00
|
|
|
bool divisorFound = false;
|
|
|
|
|
|
|
|
while (currentA != currentB) {
|
|
|
|
if (currentA > currentB) {
|
|
|
|
currentA -= currentB;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (currentB > currentA) {
|
|
|
|
currentB -= currentA;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return currentA;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Simplify and then format a fraction
|
|
|
|
std::string formatFraction(int numerator, int denominator) {
|
|
|
|
int gcd = greatestCommonDivisor(numerator, denominator);
|
|
|
|
int n = numerator / gcd;
|
|
|
|
int d = denominator / gcd;
|
|
|
|
|
|
|
|
if (d == 1) {
|
|
|
|
return std::to_string(n);
|
|
|
|
} else {
|
|
|
|
// Fraction unicode
|
|
|
|
return std::to_string(n) + "\u2044" + std::to_string(d);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Format a double by cutting off as many trailing zeros as possible
|
|
|
|
std::string formatDouble(double input) {
|
2024-10-09 17:02:43 +00:00
|
|
|
std::string output = std::to_string(abs(input));
|
2024-10-09 17:02:43 +00:00
|
|
|
int pointIndex = output.find_last_of('.');
|
|
|
|
int firstZeroIndex = output.find_last_not_of('0') + 1;
|
|
|
|
|
|
|
|
if (firstZeroIndex - 1 == pointIndex) {
|
|
|
|
output.erase(firstZeroIndex - 1, std::string::npos);
|
|
|
|
} else {
|
|
|
|
output.erase(firstZeroIndex, std::string::npos);
|
|
|
|
}
|
|
|
|
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ax² + b^x + c^x -> a(x + p) + q
|
|
|
|
std::string completeTheSquare(double a, double b, double c) {
|
|
|
|
// Calculate relevant values
|
|
|
|
double p = b / (2 * a);
|
|
|
|
double q = c - (power(b, 2) / 4 * a);
|
|
|
|
std::string output = "(x";
|
|
|
|
|
|
|
|
// Add the p value
|
|
|
|
if (p != 0) {
|
|
|
|
std::string sign = p > 0 ? "+" : "-";
|
|
|
|
output += " " + sign + " " + formatFraction(b, 2 * a) + ")²";
|
|
|
|
} else {
|
|
|
|
output += ")²";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the q value
|
|
|
|
if (q != 0) {
|
|
|
|
std::string sign = q > 0 ? "+" : "-";
|
|
|
|
output += " " + sign + " " + formatDouble(q);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the coefficient if relevant
|
|
|
|
if (a > 1) {
|
|
|
|
output.insert(0, formatDouble(a));
|
|
|
|
}
|
|
|
|
|
|
|
|
return output;
|
|
|
|
}
|
|
|
|
|
2024-10-09 17:02:43 +00:00
|
|
|
int promptForInteger(std::string letter) {
|
|
|
|
std::cout << "Please input a value for " + letter + ": ";
|
|
|
|
|
|
|
|
int input;
|
|
|
|
std::cin >> input;
|
|
|
|
|
|
|
|
return input;
|
|
|
|
}
|
|
|
|
|
2024-10-09 17:02:43 +00:00
|
|
|
int main() {
|
2024-10-09 17:02:43 +00:00
|
|
|
std::cout << "ax² + b^x + c^x -> a(x + p) + q\n";
|
|
|
|
|
|
|
|
int a = promptForInteger("a");
|
|
|
|
int b = promptForInteger("b");
|
|
|
|
int c = promptForInteger("c");
|
|
|
|
|
|
|
|
std::cout << completeTheSquare(a, b, c);
|
|
|
|
}
|