From 6c48925bc5663100ece798257e648a98d190512f Mon Sep 17 00:00:00 2001 From: newt! Date: Mon, 23 Aug 2021 14:04:45 +0100 Subject: [PATCH] Update fb percent dataset --- python/data science/fbPercentActive.py | 6 ++-- python/data science/fbPercentActive_res.csv | 40 ++++++++++----------- 2 files changed, 23 insertions(+), 23 deletions(-) diff --git a/python/data science/fbPercentActive.py b/python/data science/fbPercentActive.py index 1306819..3b7ca94 100644 --- a/python/data science/fbPercentActive.py +++ b/python/data science/fbPercentActive.py @@ -19,14 +19,14 @@ data = [] def population(country): countryCode = pycountry.countries.search_fuzzy(country)[0].alpha_3 res = requests.get('https://restcountries.eu/rest/v2/alpha/' + countryCode) - return json.loads(res.content)['population'] + return int(json.loads(res.content)['population']) for td1, td2 in zip(tds[::2], tds[1::2]): frame = {} frame['country'] = td1.text.strip() - frame['active'] = td2.text.strip() + frame['active'] = int(td2.text.strip()) * 1000000 frame['population'] = population(frame['country']) - frame['percentActive'] = (int(frame['active']) * 1000000 / int(frame['population'])) * 100 + frame['percentActive'] = (frame['active'] / frame['population']) * 100 data.append(frame) # Save the data diff --git a/python/data science/fbPercentActive_res.csv b/python/data science/fbPercentActive_res.csv index 2045ed0..a1e6aa2 100644 --- a/python/data science/fbPercentActive_res.csv +++ b/python/data science/fbPercentActive_res.csv @@ -1,21 +1,21 @@ ,country,active,population,percentActive -0,India,340,1295210000,26.250569405733433 -1,United States,200,323947000,61.738494259863494 -2,Indonesia,140,258705000,54.11569161786591 -3,Brazil,130,206135893,63.065193600223715 -4,Mexico,98,122273473,80.14821007006155 -5,Philippines,88,103279800,85.20543223360231 -6,Vietnam,71,92700000,76.59115426105717 -7,Thailand,54,65327652,82.6602492922905 -8,Egypt,47,91290000,51.484280863183265 -9,Bangladesh,46,161006790,28.570223653300587 -10,Pakistan,45,194125062,23.18093271233572 -11,Colombia,38,48759958,77.93279887566761 -12,United Kingdom,38,65110000,58.36277069574566 -13,Turkey,37,78741053,46.98946558410896 -14,France,33,66710000,49.46784590016489 -15,Argentina,31,43590400,71.11657612685362 -16,Italy,31,60665551,51.099840830589336 -17,Nigeria,31,186988000,16.578603974586603 -18,Germany,28,81770900,34.24201029950753 -19,Peru,27,31488700,85.74504504790607 +0,India,340000000,1295210000,26.250569405733433 +1,United States,200000000,323947000,61.738494259863494 +2,Indonesia,140000000,258705000,54.11569161786591 +3,Brazil,130000000,206135893,63.065193600223715 +4,Mexico,98000000,122273473,80.14821007006155 +5,Philippines,88000000,103279800,85.20543223360231 +6,Vietnam,71000000,92700000,76.59115426105717 +7,Thailand,54000000,65327652,82.6602492922905 +8,Egypt,47000000,91290000,51.484280863183265 +9,Bangladesh,46000000,161006790,28.570223653300587 +10,Pakistan,45000000,194125062,23.18093271233572 +11,Colombia,38000000,48759958,77.93279887566761 +12,United Kingdom,38000000,65110000,58.36277069574566 +13,Turkey,37000000,78741053,46.98946558410896 +14,France,33000000,66710000,49.46784590016489 +15,Argentina,31000000,43590400,71.11657612685362 +16,Italy,31000000,60665551,51.099840830589336 +17,Nigeria,31000000,186988000,16.578603974586603 +18,Germany,28000000,81770900,34.24201029950753 +19,Peru,27000000,31488700,85.74504504790607