Add the karatsuba algorithm

This commit is contained in:
newt 2024-10-09 18:02:32 +01:00
parent 1dc61ad51e
commit 9c537355e3
3 changed files with 55 additions and 8 deletions

View file

@ -0,0 +1,45 @@
def karatsuba(x, y):
xLen = len(str(x))
yLen = len(str(y))
# handle single digit multiplication at the end of the iteration
# this gives the loop an end, and gives us our final results
if xLen == 1 or yLen == 1:
return x * y
else:
n = max(xLen, yLen) // 2 # choose the longest length
# calculate a, b, c, d for the iteration
a = x // (10 ** n)
b = x % (10 ** n)
c = y // (10 ** n)
d = y % (10 ** n)
# run karatsuba to resolve ac and bd for the iteration
ac = karatsuba(a, c)
bd = karatsuba(b, d)
# use karatsuba again to resolve adbc for the iteration
adbc = karatsuba(a + b, c + d) - ac - bd
# return the solution for the digit pairs of the iteration
return ac * 10 ** (2 * n) + (adbc * 10 ** n) + bd
# helper method to easily take in our inputs
def takeInput(text):
while True:
try:
x = int(input(text))
return x
except ValueError:
print('You must input an integer!\n')
num1 = takeInput('Please enter a number (:\n')
num2 = takeInput('Please enter a number to multiply it by!\n')
# Calculate the result and check if it is right
res = num1 * num2
karatsubaRes = karatsuba(num1, num2)
print()
print('Quadratic Result: ', res)
print('Karatsuba Result: ', karatsubaRes)
if res == karatsubaRes:
print()
print('The algorithm worked (:')

View file

@ -21,17 +21,18 @@ frames = []
for x in data: for x in data:
frame = {} frame = {}
points = x['timeseries']
frame['word'] = x['ngram'] frame['word'] = x['ngram']
frame['stdev'] = numpy.std(x['timeseries']) frame['stdev'] = numpy.std(points)
frame['mean'] = numpy.mean(x['timeseries']) frame['mean'] = numpy.mean(points)
frame['median'] = numpy.median(x['timeseries']) frame['median'] = numpy.median(points)
frame['mode'] = statistics.mode(x['timeseries']) frame['mode'] = statistics.mode(points)
frame['range'] = max(x['timeseries']) - min(x['timeseries']) frame['range'] = max(points) - min(points)
frame['q1'] = numpy.percentile(x['timeseries'], 25) frame['q1'] = numpy.percentile(points, 25)
frame['q3'] = numpy.percentile(x['timeseries'], 75) frame['q3'] = numpy.percentile(points, 75)
frame['iqr'] = frame['q3'] - frame['q1'] frame['iqr'] = frame['q3'] - frame['q1']
frames.append(frame) frames.append(frame)
plt.plot(years, x['timeseries'], label=frame['word']) plt.plot(years, points, label=frame['word'])
df = pandas.DataFrame(frames) df = pandas.DataFrame(frames)
print(df) print(df)

View file

@ -17,6 +17,7 @@
- [Popularity](python/data%20science/ngrams/popularity/popularity.py) - [Popularity](python/data%20science/ngrams/popularity/popularity.py)
- [Calculators](python/calculators) - [Calculators](python/calculators)
- [Binomial Distribution](python/calculators/binomial%20distribution.py) - [Binomial Distribution](python/calculators/binomial%20distribution.py)
- [Karatsuba Algorithm](python/calculators/karatsuba%20algorithm.py)
- [Pearson's Product-Moment Correlation Coefficient](python/calculators/pmcc.py) - [Pearson's Product-Moment Correlation Coefficient](python/calculators/pmcc.py)
- [Quadratic nth Term](python/calculators/quadratic%20nth%20term.py) - [Quadratic nth Term](python/calculators/quadratic%20nth%20term.py)
- [Square Root](python/calculators/sqrt.py) - [Square Root](python/calculators/sqrt.py)