Follow the pseudocode more closely

This commit is contained in:
newt! 2021-08-26 01:39:48 +01:00
parent 101ad7e177
commit dc45e09b24
3 changed files with 75 additions and 15 deletions

View file

@ -0,0 +1,28 @@
### Useful Links
- [Wikipedia](https://en.wikipedia.org/wiki/Karatsuba_algorithm)
- [An amazing video on the topic](https://youtu.be/cCKOl5li6YM)
### The Pseudocode
```
function karatsuba (num1, num2)
if (num1 < 10) or (num2 < 10)
return num1 × num2 /* fall back to traditional multiplication */
/* Calculates the size of the numbers. */
m = min (size_base10(num1), size_base10(num2))
m2 = floor (m / 2)
/* m2 = ceil (m / 2) will also work */
/* Split the digit sequences in the middle. */
high1, low1 = split_at (num1, m2)
high2, low2 = split_at (num2, m2)
/* 3 recursive calls made to numbers approximately half the size. */
z0 = karatsuba (low1, low2)
z1 = karatsuba (low1 + high1, low2 + high2)
z2 = karatsuba (high1, high2)
return (z2 × 10 ^ (m2 × 2)) + ((z1 - z2 - z0) × 10 ^ m2) + z0
```

View file

@ -1,24 +1,22 @@
def karatsuba(x, y):
xLen = len(str(x))
yLen = len(str(y))
# handle single digit multiplication at the end of the iteration
# this gives the loop an end, and gives us our final results
# fallback to traditional multiplication
if xLen == 1 or yLen == 1:
return x * y
else:
n = max(xLen, yLen) // 2 # choose the longest length
# calculate a, b, c, d for the iteration
a = x // (10 ** n)
b = x % (10 ** n)
c = y // (10 ** n)
d = y % (10 ** n)
# run karatsuba to resolve ac and bd for the iteration
ac = karatsuba(a, c)
bd = karatsuba(b, d)
# use karatsuba again to resolve adbc for the iteration
adbc = karatsuba(a + b, c + d) - ac - bd
# return the solution for the digit pairs of the iteration
return ac * 10 ** (2 * n) + (adbc * 10 ** n) + bd
n = max(xLen, yLen) // 2 # choose the largest size
# split the digit sequences in the middle using some mathematical magic
low1 = x % (10 ** n)
low2 = y % (10 ** n)
high1 = x // (10 ** n)
high2 = y // (10 ** n)
# 3 recursive calls made to numbers approximately half the size
z0 = karatsuba(low1, low2)
z1 = karatsuba(low1 + high1, low2 + high2)
z2 = karatsuba(high1, high2)
# plug it into the formula
return (z2 * 10 ** (n * 2)) + ((z1 - z2 - z0) * (10 ** n)) + z0
# helper method to easily take in our inputs
def takeInput(text):

View file

@ -0,0 +1,34 @@
# calculators
Some extra information on the more complex topics (:
## Karatsuba's Algorithm
### Useful Links
- [Wikipedia](https://en.wikipedia.org/wiki/Karatsuba_algorithm)
- [An amazing video on the topic](https://youtu.be/cCKOl5li6YM)
### The Pseudocode
```
function karatsuba (num1, num2)
if (num1 < 10) or (num2 < 10)
return num1 × num2 /* fall back to traditional multiplication */
/* Calculates the size of the numbers. */
m = min (size_base10(num1), size_base10(num2))
m2 = floor (m / 2)
/* m2 = ceil (m / 2) will also work */
/* Split the digit sequences in the middle. */
high1, low1 = split_at (num1, m2)
high2, low2 = split_at (num2, m2)
/* 3 recursive calls made to numbers approximately half the size. */
z0 = karatsuba (low1, low2)
z1 = karatsuba (low1 + high1, low2 + high2)
z2 = karatsuba (high1, high2)
return (z2 × 10 ^ (m2 × 2)) + ((z1 - z2 - z0) × 10 ^ m2) + z0
```