feat: inverse sin calculator in python
This commit is contained in:
parent
12a1679f36
commit
e7a5f21477
9 changed files with 112 additions and 35 deletions
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -21,5 +21,5 @@ _deps
|
|||
bin
|
||||
ignored
|
||||
|
||||
maths/*.pdf
|
||||
maths/*.synctex.gz
|
||||
maths/**/*.pdf
|
||||
maths/**/*.synctex.gz
|
||||
|
|
|
@ -27,32 +27,47 @@ const cropBuffer = buffer =>
|
|||
.catch(err => reject(err));
|
||||
});
|
||||
|
||||
fs.readdirSync(mathsDir).forEach(file => {
|
||||
const [fileName, fileExtension] = file.split('.');
|
||||
const filePath = path.join(mathsDir, file);
|
||||
const crawlDirectory = async dir => {
|
||||
const dirents = fs.readdirSync(dir, { withFileTypes: true });
|
||||
|
||||
if (file.endsWith('.pdf')) {
|
||||
pdfToPng(filePath, {
|
||||
viewportScale: 2
|
||||
}).then(async output => {
|
||||
const pageCount = output.length;
|
||||
const files = await Promise.all(
|
||||
dirents.map(dirent => {
|
||||
const res = path.resolve(dir, dirent.name);
|
||||
return dirent.isDirectory() ? crawlDirectory(res) : res;
|
||||
})
|
||||
);
|
||||
|
||||
if (pageCount > 1)
|
||||
output.forEach(async (page, i) =>
|
||||
return files.flat();
|
||||
};
|
||||
|
||||
(async () => {
|
||||
const files = await crawlDirectory(mathsDir);
|
||||
|
||||
files.forEach(file => {
|
||||
const [filePath, fileDirectory, fileNameWithExt] = file.match(/(.*)\/((?:.(?!\/))+)$/);
|
||||
const [fileName, fileExtension] = fileNameWithExt.split('.');
|
||||
|
||||
if (file.endsWith('.pdf')) {
|
||||
pdfToPng(filePath).then(async output => {
|
||||
const pageCount = output.length;
|
||||
|
||||
if (pageCount > 1)
|
||||
output.forEach(async (page, i) =>
|
||||
fs.writeFileSync(
|
||||
path.join(fileDirectory, `${fileName}-${i + 1}.png`),
|
||||
await cropBuffer(page.content)
|
||||
)
|
||||
);
|
||||
else
|
||||
fs.writeFileSync(
|
||||
path.join(mathsDir, `${fileName}-${i + 1}.png`),
|
||||
await cropBuffer(page.content)
|
||||
)
|
||||
);
|
||||
else
|
||||
fs.writeFileSync(
|
||||
path.join(mathsDir, `${fileName}.png`),
|
||||
await cropBuffer(output[0].content)
|
||||
);
|
||||
});
|
||||
}
|
||||
path.join(fileDirectory, `${fileName}.png`),
|
||||
await cropBuffer(output[0].content)
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
if (fileExtension !== 'tex' && fileExtension !== 'png' && fileExtension !== 'cls') {
|
||||
fs.rmSync(filePath);
|
||||
}
|
||||
});
|
||||
if (fileExtension !== 'tex' && fileExtension !== 'png' && fileExtension !== 'cls') {
|
||||
fs.rmSync(filePath);
|
||||
}
|
||||
});
|
||||
})();
|
||||
|
|
2
.vscode/settings.json
vendored
2
.vscode/settings.json
vendored
|
@ -36,5 +36,5 @@
|
|||
},
|
||||
"latex-workshop.latex.autoBuild.run": "onSave",
|
||||
"latex-workshop.latex.autoClean.run": "onBuilt",
|
||||
"latex-workshop.latex.search.rootFiles.include": ["**/*.tex", "root.tex"]
|
||||
"latex-workshop.cls"
|
||||
}
|
||||
|
|
|
@ -1,19 +1,50 @@
|
|||
from cmath import e, sqrt
|
||||
from cmath import e, sqrt, log
|
||||
from _helpers import floatInput
|
||||
|
||||
i = sqrt(-1)
|
||||
|
||||
compute = lambda numerator, denominator: (numerator / denominator).real
|
||||
ln = lambda x: log(x, e)
|
||||
|
||||
sin = lambda x: compute(pow(e, i * x) - pow(e, -i * x), 2 * i)
|
||||
cos = lambda x: compute(pow(e, i * x) + pow(e, -i * x), 2)
|
||||
tan = lambda x: compute(pow(e, i * x) - pow(e, -i * x), i * (pow(e, i * x) + pow(e, -i * x)))
|
||||
csc = lambda x: 1 / sin(x)
|
||||
sec = lambda x: 1 / cos(x)
|
||||
cot = lambda x: 1 / tan(x)
|
||||
|
||||
arcsin = lambda x: (-i * ln((i * x) + sqrt(1 - pow(x, 2)))).real
|
||||
|
||||
# todo: finish arc functions
|
||||
arccos = lambda x: None
|
||||
arctan = lambda x: None
|
||||
arccsc = lambda x: None
|
||||
arcsec = lambda x: None
|
||||
arccot = lambda x: None
|
||||
|
||||
radians = floatInput("Please enter an amount of radians: ")
|
||||
|
||||
print(f"""
|
||||
sin({radians}) = {sin(radians)})
|
||||
Trigometric functions
|
||||
|
||||
sin({radians}) = {sin(radians)}
|
||||
cos({radians}) = {cos(radians)}
|
||||
tan({radians}) = {tan(radians)}
|
||||
|
||||
csc({radians}) = {1 / sin(radians)}
|
||||
sec({radians}) = {1 / cos(radians)}
|
||||
cot({radians}) = {1 / tan(radians)}""")
|
||||
Reciprocal trigometric functions
|
||||
|
||||
csc({radians}) = {csc(radians)}
|
||||
sec({radians}) = {sec(radians)}
|
||||
cot({radians}) = {cot(radians)}
|
||||
|
||||
Inverse trigometric functions
|
||||
|
||||
arcsin({sin(radians)}) = {arcsin(sin(radians))}
|
||||
arccos({cos(radians)}) = {arccos(cos(radians))}
|
||||
arctan({tan(radians)}) = {arctan(tan(radians))}
|
||||
|
||||
Inverse reciprocal trigometric functions
|
||||
|
||||
arccsc({csc(radians)}) = {arccsc(csc(radians))}
|
||||
arcsec({sec(radians)}) = {arcsec(sec(radians))}
|
||||
arccot({cot(radians)}) = {arccot(cot(radians))}""")
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 10 KiB |
|
@ -1,3 +1,2 @@
|
|||
\ProvidesClass{style}
|
||||
\LoadClass[17pt]{extarticle}
|
||||
\pagenumbering{gobble}
|
||||
|
|
BIN
maths/trigometric functions/sin.png
Normal file
BIN
maths/trigometric functions/sin.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 40 KiB |
31
maths/trigometric functions/sin.tex
Normal file
31
maths/trigometric functions/sin.tex
Normal file
|
@ -0,0 +1,31 @@
|
|||
\documentclass{../style}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{gather*}
|
||||
\text{By Euler's formula:} \\
|
||||
e^{i\theta} = cos(\theta) + i\sin(\theta) \\
|
||||
e^{-i\theta} = cos(\theta) - i\sin(\theta)
|
||||
\end{gather*}
|
||||
|
||||
\begin{gather*}
|
||||
\therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}
|
||||
\end{gather*}
|
||||
|
||||
\begin{gather*}
|
||||
\text{let} \quad \sin(\theta) = x \\
|
||||
2ix = e^{i\theta} - e^{-i\theta} \\
|
||||
2ie^{i\theta}x = (e^{i\theta})^2 - 1 \\
|
||||
(e^{i\theta})^2 + (-2ix)e^{i\theta} - 1 = 0
|
||||
\end{gather*}
|
||||
|
||||
\begin{gather*}
|
||||
e^{i\theta} = \frac{-(-2ix) \pm \sqrt{(-2ix)^2 - 4(1)(-1)}}{2} = ix \pm \sqrt{1 - x^2} \\
|
||||
i\theta = \ln(ix \pm \sqrt{1 - x^2}) \\
|
||||
\theta = -i\ln(ix \pm \sqrt{1 - x^2})
|
||||
\end{gather*}
|
||||
|
||||
\begin{gather*}
|
||||
\therefore \arcsin(\theta) = -i\ln(i\theta \pm \sqrt{1 -\theta^2})
|
||||
\end{gather*}
|
||||
\end{document}
|
|
@ -1,7 +1,8 @@
|
|||
{
|
||||
"name": "the-honk",
|
||||
"scripts": {
|
||||
"prepare": "husky install"
|
||||
"prepare": "husky install",
|
||||
"maths": "node .husky/scripts/cleanMaths.js"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^17.0.6",
|
||||
|
|
Loading…
Reference in a new issue