)) INDEPTH Python,

WALKTHROUGH

) | Creating Raspberry Pie in Python

Import libraries
import math,random,pygame,sys

Set up class for main game variables
class Game():
def __init__(self):
self.score=0
self.raspberryCount=0

Set up class for the player’s turret
class Turret(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("turret.
png")
self.rect = self.image.get_rect()
self.rect.x = 240; self.rect.y = 630

Set up method to enable the player’s turret to move
def moveMe(self,direction):
if direction=="left" and self.rect.x>5:
self.rect.x-=
if direction=="right" and self.rect.
x<(480-self.rect.width):
self.rect.x+=5

Set up class for bullets
class Bullet(pygame.sprite.Sprite):
def __init__(self,turret):
pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("bullet.
png")
self.rect=self.image.get_rect()
self.rect.x=turret.rect.x+(turret.rect.
width/2)-(self.rect.width/2)
self.rect.y=turret.rect.y-turret.rect.
height

Set up method to move bullets up the screen
def updatePosition(self):
if self.rect.y>0-self.rect.height:
self.rect.y-=
else:
self.killQ

Set up class for fruit
class Fruit(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self)
self.genus=random.randint(1,3)
if self.genus==1: imagefile="raspberry"

if self.genus==2: imagefile="strawberry"

if self.genus==3: imagefile="cherry"

self.image=pygame.imageload(imagefile+".
png")

self.image=pygame.transform.rotate(self.
image, -15+random. randint(@,20))

self.rect=self.image.get_rect()

self.rect.y=-0-self.rect.height

self.rect.x=Crandom.randint(2,44)*10)

m PC PRO-OCTOBER 2012

Start by opening Geany and saving a blank document as

“raspberry.py”. The extension tells Geany we‘re using Python, so
it will highlight our syntax accordingly. As another visual aid, go to
Geany’s Edit menu, select Preferences | Editor | Display and tick
”Show white space” - this helps spot indentation errors. Now we’'re
ready for our first line of code. The import statement links external
libraries into our program, so we can use the classes, properties and
methods they contain. Before going any further, let’s test that these
libraries can be found. Click the Execute button and a command
window should pop up. If there’s a problem, this will contain an
error message; otherwise, we’re good to go.

Now we create our first class - a simple one called Game that

keeps track of the score. We define this class using the class
statement, and give it a name. The colon after the name marks the
start of the block of code that describes the properties of instances of
Game. No punctuation is needed to mark the end of this block: that’s
shown by indentation. Define a single method called ”__init_“. This
is a special method (called a constructor) that’s automatically run
whenever an object of this class is created. In this case, it creates
and initialises variables for the score and the raspberry count. As
you can see, the same colon and indentation syntax is used, and
when we‘re defining a class we use the placeholder ”self” to stand
in for whatever the name of the instance might be.

Now let’s define a class for the player’s turret. We'll base this

on Pygame’s Sprite class, which is full of useful properties and
methods. To specify this, we put the name of that class (the “parent
class”) in brackets after the class name. Now we create a constructor
method for the turret. First, we call the parent class constructor to
initialise everything. Then we use the Pygame image.load method to
import a graphic for our turret and store it in the property “image”.
The get_rect() method lets us access the position and dimensions of
this image, so in the next line we can use the rect property to set the
pixel position of the turret. The co-ordinates we’ve chosen place it
halfway along the bottom of the area we’re going to use for the
game. Using a semicolon lets us put two commands on one line.

The turret needs to be able to move, so we’ll add a second

method called moveMe, to be called when the player presses a
cursor key. This will take two arguments: a reference to the turret
to be moved and a direction to move in. If the direction argument is
"left” - and the left edge of the turret isn't already within five pixels
of the edge of the game area - we subtract five pixels from its
horizontal co-ordinates using the ”-=* subtraction operator. (Note
also the ”==" operator that’s used for checking if two values are
equal.) If the direction is “right”, we test whether the turret’s right
edge is too close to the right-hand side: we calculate this using the
rect.width property, so our code will work regardless of what size
the turret graphic is. Assuming there’s space to move, we then add
five pixels to the turret’s horizontal co-ordinate.

Next we create a class for bullets, in much the same way as

the turret. However, whereas the turret is always created in the
middle of the playing area, each new bullet instance must appear
directly above the centre of the turret. To find the correct ”x”
co-ordinate, we perform a few calculations involving the rect.width
properties of both the turret and bullet objects. To place the bullet
directly above the turret, we set its “y” co-ordinate to be the same
as the ”y” co-ordinate of the turret, minus the turret’s height (vertical
co-ordinates count from the top of the screen to the bottom). The
bullet needs a movement method too: updatePosition moves it five
pixels up the screen, or deletes it if it has reached the top.

All three types of fruit in the game behave in the same way, so

we can derive them all from a single class. The type of fruit each
instance represents is determined by a random integer between
one and three, and stored in a property called genus. We use this
property to assemble a filename and load in the right image. To add
visual variety, we rotate the image randomly, to an angle between
-5° and 15°. All fruits start out above the top of the screen, ready to
drop into the playing area, so we set the initial vertical position
to zero, minus the height of the image. Finally, we set its horizontal
starting position. We don’t want fruit to protrude off the edge of the
play area, so we use a random number between 20 and 440.

www.pcpro.co.uk

_)) INDEPTH_ Python,

WALKTHROUGH

) | Creating Raspberry Pie in Python

Import libraries
import math,random,pygame,sys

Set up class for main game variables
class Game():
def __init__(self):
self.score=0
self.raspberryCount=0

Set up class for the player’s turret
class Turret(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("turret.
png")
self.rect = self.image.get_rect()
self.rect.x = 240; self.rect.y = 630

Set up method to enable the player’s turret to move
def moveMe(self,direction):
if direction=="left" and self.rect.x>5:
self.rect.x-=
if direction=="right" and self.rect.
x<(480-self.rect.width):
self.rect.x+=5

Set up class for bullets
class Bullet(pygame.sprite.Sprite):
def __init__(self,turret):
pygame.sprite.Sprite.__init__(self)
self.image=pygame.image.load("bullet.
png")
self.rect=self.image.get_rect()
self.rect.x=turret.rect.x+(turret.rect.
width/2)-(self.rect.width/2)
self.rect.y=turret.rect.y-turret.rect.
height

Set up method to move bullets up the screen
def updatePosition(self):
if self.rect.y>0-self.rect.height:
self.rect.y-=
else:
self.killQ

Set up class for fruit
class Fruit(pygame.sprite.Sprite):
def __init__(self):
pygame.sprite.Sprite.__init__(self)
self.genus=random.randint(1,3)
if self.genus==1: imagefile="raspberry"

if self.genus==2: imagefile="strawberry"

if self.genus==3: imagefile="cherry"

self.image=pygame.imageload(imagefile+".
png")

self.image=pygame.transform.rotate(self.
image, -15+random. randint(@,20))

self.rect=self.image.get_rect()

self.rect.y=-0-self.rect.height

self.rect.x=Crandom.randint(2,44)*10)

m PC PRO-OCTOBER 2012

Start by opening Geany and saving a blank document as

“raspberry.py”. The extension tells Geany we‘re using Python, so
it will highlight our syntax accordingly. As another visual aid, go to
Geany’s Edit menu, select Preferences | Editor | Display and tick
”Show white space” - this helps spot indentation errors. Now we’'re
ready for our first line of code. The import statement links external
libraries into our program, so we can use the classes, properties and
methods they contain. Before going any further, let’s test that these
libraries can be found. Click the Execute button and a command
window should pop up. If there’s a problem, this will contain an
error message; otherwise, we’re good to go.

Now we create our first class - a simple one called Game that

keeps track of the score. We define this class using the class
statement, and give it a name. The colon after the name marks the
start of the block of code that describes the properties of instances of
Game. No punctuation is needed to mark the end of this block: that’s
shown by indentation. Define a single method called ”__init_“. This
is a special method (called a constructor) that’s automatically run
whenever an object of this class is created. In this case, it creates
and initialises variables for the score and the raspberry count. As
you can see, the same colon and indentation syntax is used, and
when we‘re defining a class we use the placeholder ”self” to stand
in for whatever the name of the instance might be.

Now let’s define a class for the player’s turret. We'll base this

on Pygame’s Sprite class, which is full of useful properties and
methods. To specify this, we put the name of that class (the “parent
class”) in brackets after the class name. Now we create a constructor
method for the turret. First, we call the parent class constructor to
initialise everything. Then we use the Pygame image.load method to
import a graphic for our turret and store it in the property “image”.
The get_rect() method lets us access the position and dimensions of
this image, so in the next line we can use the rect property to set the
pixel position of the turret. The co-ordinates we’ve chosen place it
halfway along the bottom of the area we’re going to use for the
game. Using a semicolon lets us put two commands on one line.

The turret needs to be able to move, so we’ll add a second

method called moveMe, to be called when the player presses a
cursor key. This will take two arguments: a reference to the turret
to be moved and a direction to move in. If the direction argument is
"left” - and the left edge of the turret isn't already within five pixels
of the edge of the game area - we subtract five pixels from its
horizontal co-ordinates using the ”-=* subtraction operator. (Note
also the ”==" operator that’s used for checking if two values are
equal.) If the direction is “right”, we test whether the turret’s right
edge is too close to the right-hand side: we calculate this using the
rect.width property, so our code will work regardless of what size
the turret graphic is. Assuming there’s space to move, we then add
five pixels to the turret’s horizontal co-ordinate.

Next we create a class for bullets, in much the same way as

the turret. However, whereas the turret is always created in the
middle of the playing area, each new bullet instance must appear
directly above the centre of the turret. To find the correct ”x”
co-ordinate, we perform a few calculations involving the rect.width
properties of both the turret and bullet objects. To place the bullet
directly above the turret, we set its “y” co-ordinate to be the same
as the ”y” co-ordinate of the turret, minus the turret’s height (vertical
co-ordinates count from the top of the screen to the bottom). The
bullet needs a movement method too: updatePosition moves it five
pixels up the screen, or deletes it if it has reached the top.

All three types of fruit in the game behave in the same way, so

we can derive them all from a single class. The type of fruit each
instance represents is determined by a random integer between
one and three, and stored in a property called genus. We use this
property to assemble a filename and load in the right image. To add
visual variety, we rotate the image randomly, to an angle between
-5° and 15°. All fruits start out above the top of the screen, ready to
drop into the playing area, so we set the initial vertical position
to zero, minus the height of the image. Finally, we set its horizontal
starting position. We don’t want fruit to protrude off the edge of the
play area, so we use a random number between 20 and 440.

www.pcpro.co.uk

| Python LINDEPTH ({

To find out about our Raspberry Pi competition
Read our feature on p38

7 ## Set up method to enable fruit to fall down the screen
def updatePosition(self,game):
if self.rect.y<640:
self.rect.y+=3
else:
if self.genus==1:
game.score+=10
game. raspberryCount+=1
else:
game.score-=50
self.kill(Q)
Set up method to update score and remove fruit when
shot
def shot(self,game):
if self.genus==1:
game . score-=50
else:
game.score+=10
self.killQ)

8 ## Initidlise the game
pygame.init()
pygame.key.set_repeat(l, 20)
scoreFont=pygame. font.Font(None,17)
statusFont=pygame. font.Font(None,17)
black=(0,0,0)
screen=pygame.display.set_mode([480, 640])
pygame.display.set_caption('Raspberry Pie’)

9 ## Create initial object instances
game=Game()
turret=Turret()
sprites=pygame.sprite.Group()
sprites.add(turret)
fruits=pygame.sprite.Group()
bullets=pygame.sprite.Group()

10 ## Initialise game over flag and timer
end_game=False
clock=pygame.time.Clock()
tock=0

11 #¢ Main loop starts here
while end_game!=True:
clock.tick(30)
tock+=1
screen. fill(black)

12 ## Process events
for event in pygame.event.get():
if event.type==pygame.QUIT:
sys.exit
if event.type==pygame.KEYDOWN:
if event.key==pygame.K_LEFT:
turret.moveMe("left")
if event.key==pygame.K_RIGHT:
turret.moveMe("right™)
if event.key==pygame.K_SPACE:
bullet=Bullet(turret)
bullets.add(bullet)

Www.pcpro.co.uk

Just as bullets travel upwards, fruit moves down the screen at

regular intervals - so we give this class its own updatePosition
method. If the fruit’s vertical position is less than 640 - that s, if it’s
still within the play area - it drops by three pixels. Otherwise, the
score is updated. If the object’s genus property is 1, meaning this fruit
is a raspberry, the player gets ten points, and the raspberry counter
is incremented. Otherwise, the player loses 50 points. Either way, the
fruit object is now deleted. We also create a method called Shot, to
be called if the fruit is hit by a bullet. If the fruit is a raspberry, we
deduct 50 points from the player’s score; otherwise, add 10 points.
Again, in either case, the object is then destroyed.

With all our classes now created, it’s time to initialise the game.

First we initialise Pygame itself, to ensure everything is in its
default state. Then we use the pygame.key.set repeat() method to
specify that if the user holds down a key, an event will register every
20 milliseconds. The next two lines set up font objects that will display
the score and how many raspberries have landed - for more on this,
see the Pygame website. We store the value of black in a variable of
that name (the three zeros represent red, green, and blue values) -
this is just for convenience later on. Next we set up the game’s
window: Raspberry Pie runs in a portrait-shaped space measuring
480 x 640 pixels, which we'll refer to as ”screen”. Finally, we set the
caption of this window to show the name of the game.

We’re now ready to start creating objects based on the classes we

defined in steps 2-7. First we create a Game object called game,
and a Turret object called turret (note the capitalisation convention).
For convenience, we then create a group called ”sprites”, and add the
turret to this group. We also create groups for the fruits and bullets
(although we can’t add members to these groups yet, as we haven’t
yet created the objects). Combining sprites into groups is a convenient
way to organise game elements. If you were creating a platform
game, for example, using groups would make it easy to draw all the
background tiles at once, then draw the player and enemies on top.
Sprite groups also make it easy to use Pygame’s collision detection
routines: a single line of code can check whether any element of one
group has collided with any element of another.

l Before entering the main loop, we initialise a variable called
end_game: so long as this remains False, the main loop will

continue cycling. When ten raspberries have hit the ground, we'll

set this variable to True and the game will end. Next we initialise

an object called clock, based on the Pygame Clock object, to manage

how often we poll for events and update the screen - if the game tore

along at the maximum speed the Raspberry Pi can handle, it would

be unplayable. Finally, we initialise a variable called “tock”. This will

keep track of how long it is since a fruit last appeared onscreen, so

we can infroduce a new one every two seconds.

1 Now it’s time to start the main game loop. We implement this

using a while block - a block of code that executes only while
the variable end_game isn't set to True (the != operator means “not
equal to”). At the end of the block, this condition will be tested again,
and if it’s still true then the block will execute again - and so on,
round and round, until the value of end_game changes. Inside this
loop, we start with a Pygame clock.tick() statement: this introduces
a small pause, regulating the speed of execution so that the loop
runs no more than 30 times a second (as specified by the number in
brackets). Next we increment the value of tock by one, to mark that
a bit more time has passed. Finally, we clear the playing area, using
the value of black that we defined earlier.

1 Now we check for keypress events, so that the game can

respond to the user. Pygame creates and stores an event each
time a key is pressed (or multiple events if a key is held down), and
we can access them using its event.get() method. Python’s for...in
syntax allows us to cycle through and deal with each event in turn.
For each event received, we first check whether the user has closed
the game window = in which case we terminate the game. Then we
check whether the user has pressed the left or right cursor key: if so,
we call the turret’s moveMe method with the appropriate parameter.
If the user has pressed space, we create a new bullet - passing it a
reference to the turret so it knows where to appear - and add this
bullet to our sprite group.

>

PC PRO-OCTOBER 2012 m

)) INDEPTH Python,

WALKTHROUGH

13 ## Move objects
for bullet in bullets:
bullet.updatePosition()
for fruit in fruits:
fruit.updatePosition(game)

14 ## Add new fruit if 2 seconds has elapsed
if tock>60:
if len(fruits)<10:
fruit=FruitQ
fruits.add(fruit)
tock=0

15 ## Check for collisions
collisions=pygame.sprite.groupcollide(fruits,
bullets,False,True)
if collisions:
for fruit in collisions:
fruit.shot(game)

16 ## Update player score
scoreText=scoreFont.render('Score: '+str(game.
score),True, (255,255,255),(0,0,0))
screen.blit(scoreText, (0,620))
statusText=statusFont.render('Raspberries:'+str
(10-game. raspberryCount), True, (255,210,210),(0,0,0))
screen.blit(statusText,(0,10))

17 ## Update the screen and check for game over

sprites.draw(screen); bullets.draw(screen);
fruits.draw(screen)

pygame.display.flip()

if game.raspberryCount>=10:

end_game=True

Game over: display the player’s final score
scoreBadge=pygame . image.load("scoreframe.png")
scoreBadge. convert_alpha()
left=90; top=250
screen.blit(scoreBadge, (left,top))
scoreFont=pygame. font.Font(None,52)
statusText=scoreFont.render('Your Score:'+str(game.score)
,True, (0,0,0),(231,230,33))
screen.blit(statusText, (105,300))
pygame.display.flip()
Wait for the player to close the game window
while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:
sys.exit()

m PC PRO-OCTOBER 2012

l Now we move all bullets up the screen, and dll fruits down. As
each object contains a method that moves it appropriately, we
simply need to call this method for each bullet and fruit in the game.
Again, we can do this using the for...in syntax to move each member
of the bullets group and each member of the fruits group in turn.
We don‘t need to send any arguments to the bullet’s updatePosition
method, but for the fruits we must call updatePosition(Game). This
is because the updatePosition method in the fruit class includes code
that automatically updates the user’s score if the fruit reaches the
bottom of the play area - so it needs a reference to the object that
contains that property.

l The variable “tock” increments each time the main loop is
executed. Since the loop runs 30 times per second, we know
two seconds have passed when tock exceeds 60. At this point, we
add a new fruit - so long as there are fewer than ten fruits already
onscreen. We check this using the len function (the name is short,
slightly incongruously, for “length”) to count how many members the
fruits group has. If it’s fewer than ten, we create a new fruit object
and add it to our fruits group. As the game runs, “fruit” will always
refer to whichever fruit object was created most recently: we could
give each fruit instance its own unique reference, but there’s no need.
Finally, we reset tock to zero, restarting our two-second count.

l 5 Now let’s check whether any of the fruits has been hit by a
bullet. Pygame makes this very easy: simply pass references
to the two sprite groups to Pygame’s groupcollide() method and it
will work out the collisions. It can also automatically delete either or
both of the colliding objects. In our case, we don’t want fruits to be
deleted (first we want to check the fruit type and update the score
accordingly) - but the bullet can be removed right away. We convey
this by passing “False, True” as arguments, referring to the first and
second arguments respectively. The groupcollide() method returns a
list, which we’ll call “collisions”: if it has any members, we use yet
another for...in loop to run the ”shot” method on each fruit that's hit.

l The game mechanics are now complete, but we still need
code to show the current score and how many raspberries
have been collected. Earlier on, we set up two Pygame font objects;
now we can create text by accessing the render method of this
class. This takes four arguments: the first is the text to be rendered,
followed by a string (text) representation of the user’s score. Then
we specify whether or not we want the text to be smoothed, and
give RGB values for foreground and background colours. Pygame’s
screen.blit() method draws the rendered text onto the screen at
specified co-ordinates. We repeat this with the raspberry count,
the difference being that this number counts down from ten and
appears at the top of the screen rather than the bottom.

l Finally, we update the screen to reflect the new positions of
our turret, bullets and fruit. Pygame’s draw method lets us
render all members of a sprite group in one line of code, but the
screen isn’t redrawn right away: the display.flip() method updates
the whole screen in one go, so that everything moves smoothly and
simultaneously. Finally, we check whether the game is over. As
the indentation shows, this is the end of the main code block, so
execution loops back to the while statement in section 11, and the
following lines are executed only after the game ends. These lines
load in a frame graphic, using Pygame’s convert_alpha method to
provide transparency, and render the final score text on top. We use
another “while” block to pause the game so that the player can read
the text. When they close the game window, Python exits the game.

The very last step is testing. This is especially important if you’ve been
using a different platform for development: by modern standards, the
Raspberry Pi is a very slow computer, and it runs a different OS to
your PC, so it’s vital to ensure that your game works properly and
runs at a playable speed before publishing it. If you’re working in
Windows, and plan to test your creation on native hardware only at
the end of the process - for example, if you're coding at home to run
on a Raspberry Pi at school - the easiest approach is to transfer the
folder containing your game using a USB memory stick and load it up
in Geany on the Raspberry Pi. It may take a little while to initialise,
but so long as your game doesn’t waste memory or try to carry out
excessively demanding computations, it should be fine.

www.pcpro.co.uk

®

L Python LINDEPTH ({

To find out about our Raspberry Pi competition
Read our feature on p38

7 ## Set up method to enable fruit to fall down the screen
def updatePosition(self,game):
if self.rect.y<640:
self.rect.y+=3
else:
if self.genus==1:
game.score+=10
game. raspberryCount+=1
else:
game.score-=50
self.kill(Q)
Set up method to update score and remove fruit when
shot
def shot(self,game):
if self.genus==1:
game . score-=50
else:
game.score+=10
self.killQ)

8 ## Initidlise the game
pygame.init()
pygame.key.set_repeat(l, 20)
scoreFont=pygame. font.Font(None,17)
statusFont=pygame. font.Font(None,17)
black=(0,0,0)
screen=pygame.display.set_mode([480, 640])
pygame.display.set_caption('Raspberry Pie’)

9 ## Create initial object instances
game=Game()
turret=Turret()
sprites=pygame.sprite.Group()
sprites.add(turret)
fruits=pygame.sprite.Group()
bullets=pygame.sprite.Group()

10 ## Initialise game over flag and timer
end_game=False
clock=pygame.time.Clock()
tock=0

11 #¢ Main loop starts here
while end_game!=True:
clock.tick(30)
tock+=1
screen. fill(black)

12 ## Process events
for event in pygame.event.get():
if event.type==pygame.QUIT:
sys.exit
if event.type==pygame.KEYDOWN:
if event.key==pygame.K_LEFT:
turret.moveMe("left")
if event.key==pygame.K_RIGHT:
turret.moveMe("right™)
if event.key==pygame.K_SPACE:
bullet=Bullet(turret)
bullets.add(bullet)

Www.pcpro.co.uk

Just as bullets travel upwards, fruit moves down the screen at

regular intervals - so we give this class its own updatePosition
method. If the fruit’s vertical position is less than 640 - that s, if it’s
still within the play area - it drops by three pixels. Otherwise, the
score is updated. If the object’s genus property is 1, meaning this fruit
is a raspberry, the player gets ten points, and the raspberry counter
is incremented. Otherwise, the player loses 50 points. Either way, the
fruit object is now deleted. We also create a method called Shot, to
be called if the fruit is hit by a bullet. If the fruit is a raspberry, we
deduct 50 points from the player’s score; otherwise, add 10 points.
Again, in either case, the object is then destroyed.

With all our classes now created, it’s time to initialise the game.

First we initialise Pygame itself, to ensure everything is in its
default state. Then we use the pygame.key.set repeat() method to
specify that if the user holds down a key, an event will register every
20 milliseconds. The next two lines set up font objects that will display
the score and how many raspberries have landed - for more on this,
see the Pygame website. We store the value of black in a variable of
that name (the three zeros represent red, green, and blue values) -
this is just for convenience later on. Next we set up the game’s
window: Raspberry Pie runs in a portrait-shaped space measuring
480 x 640 pixels, which we'll refer to as ”screen”. Finally, we set the
caption of this window to show the name of the game.

We’re now ready to start creating objects based on the classes we

defined in steps 2-7. First we create a Game object called game,
and a Turret object called turret (note the capitalisation convention).
For convenience, we then create a group called ”sprites”, and add the
turret to this group. We also create groups for the fruits and bullets
(although we can’t add members to these groups yet, as we haven’t
yet created the objects). Combining sprites into groups is a convenient
way to organise game elements. If you were creating a platform
game, for example, using groups would make it easy to draw all the
background tiles at once, then draw the player and enemies on top.
Sprite groups also make it easy to use Pygame’s collision detection
routines: a single line of code can check whether any element of one
group has collided with any element of another.

l Before entering the main loop, we initialise a variable called
end_game: so long as this remains False, the main loop will

continue cycling. When ten raspberries have hit the ground, we'll

set this variable to True and the game will end. Next we initialise

an object called clock, based on the Pygame Clock object, to manage

how often we poll for events and update the screen - if the game tore

along at the maximum speed the Raspberry Pi can handle, it would

be unplayable. Finally, we initialise a variable called “tock”. This will

keep track of how long it is since a fruit last appeared onscreen, so

we can infroduce a new one every two seconds.

1 Now it’s time to start the main game loop. We implement this

using a while block - a block of code that executes only while
the variable end_game isn't set to True (the != operator means “not
equal to”). At the end of the block, this condition will be tested again,
and if it’s still true then the block will execute again - and so on,
round and round, until the value of end_game changes. Inside this
loop, we start with a Pygame clock.tick() statement: this introduces
a small pause, regulating the speed of execution so that the loop
runs no more than 30 times a second (as specified by the number in
brackets). Next we increment the value of tock by one, to mark that
a bit more time has passed. Finally, we clear the playing area, using
the value of black that we defined earlier.

1 Now we check for keypress events, so that the game can

respond to the user. Pygame creates and stores an event each
time a key is pressed (or multiple events if a key is held down), and
we can access them using its event.get() method. Python’s for...in
syntax allows us to cycle through and deal with each event in turn.
For each event received, we first check whether the user has closed
the game window = in which case we terminate the game. Then we
check whether the user has pressed the left or right cursor key: if so,
we call the turret’s moveMe method with the appropriate parameter.
If the user has pressed space, we create a new bullet - passing it a
reference to the turret so it knows where to appear - and add this
bullet to our sprite group.

>

PC PRO-OCTOBER 2012 m

_)) INDEPTH_ Python,

WALKTHROUGH

13 ## Move objects
for bullet in bullets:
bullet.updatePosition()
for fruit in fruits:
fruit.updatePosition(game)

14 ## Add new fruit if 2 seconds has elapsed
if tock>60:
if len(fruits)<10:
fruit=FruitQ
fruits.add(fruit)
tock=0

15 ## Check for collisions
collisions=pygame.sprite.groupcollide(fruits,
bullets,False,True)
if collisions:
for fruit in collisions:
fruit.shot(game)

16 ## Update player score
scoreText=scoreFont.render('Score:'+str(game.
score),True, (255,255,255),(0,0,0))
screen.blit(scoreText, (0,620))
statusText=statusFont.render('Raspberries:'+str
(10-game. raspberryCount), True, (255,210,210),(0,0,0))
screen.blit(statusText,(0,10))

17 ## Update the screen and check for game over

sprites.draw(screen); bullets.draw(screen);
fruits.draw(screen)

pygame.display.flip()

if game.raspberryCount>=10:

end_game=True

Game over: display the player’s final score
scoreBadge=pygame . image.load("scoreframe.png")
scoreBadge. convert_alpha()
left=90; top=250
screen.blit(scoreBadge, (left,top))
scoreFont=pygame. font.Font(None,52)
statusText=scoreFont.render('Your Score:'+str(game.score)
,True, (0,0,0),(231,230,33))
screen.blit(statusText, (105,300))
pygame.display.flip()
Wait for the player to close the game window
while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:
sys.exit()

m PC PRO-OCTOBER 2012

l Now we move all bullets up the screen, and dll fruits down. As
each object contains a method that moves it appropriately, we
simply need to call this method for each bullet and fruit in the game.
Again, we can do this using the for...in syntax to move each member
of the bullets group and each member of the fruits group in turn.
We don‘t need to send any arguments to the bullet’s updatePosition
method, but for the fruits we must call updatePosition(Game). This
is because the updatePosition method in the fruit class includes code
that automatically updates the user’s score if the fruit reaches the
bottom of the play area - so it needs a reference to the object that
contains that property.

l The variable “tock” increments each time the main loop is
executed. Since the loop runs 30 times per second, we know
two seconds have passed when tock exceeds 60. At this point, we
add a new fruit - so long as there are fewer than ten fruits already
onscreen. We check this using the len function (the name is short,
slightly incongruously, for “length”) to count how many members the
fruits group has. If it’s fewer than ten, we create a new fruit object
and add it to our fruits group. As the game runs, “fruit” will always
refer to whichever fruit object was created most recently: we could
give each fruit instance its own unique reference, but there’s no need.
Finally, we reset tock to zero, restarting our two-second count.

l 5 Now let’s check whether any of the fruits has been hit by a
bullet. Pygame makes this very easy: simply pass references
to the two sprite groups to Pygame’s groupcollide() method and it
will work out the collisions. It can also automatically delete either or
both of the colliding objects. In our case, we don’t want fruits to be
deleted (first we want to check the fruit type and update the score
accordingly) - but the bullet can be removed right away. We convey
this by passing “False, True” as arguments, referring to the first and
second arguments respectively. The groupcollide() method returns a
list, which we’ll call “collisions”: if it has any members, we use yet
another for...in loop to run the “shot” method on each fruit that's hit.

l The game mechanics are now complete, but we still need
code to show the current score and how many raspberries
have been collected. Earlier on, we set up two Pygame font objects;
now we can create text by accessing the render method of this
class. This takes four arguments: the first is the text to be rendered,
followed by a string (text) representation of the user’s score. Then
we specify whether or not we want the text to be smoothed, and
give RGB values for foreground and background colours. Pygame’s
screen.blit() method draws the rendered text onto the screen at
specified co-ordinates. We repeat this with the raspberry count,
the difference being that this number counts down from ten and
appears at the top of the screen rather than the bottom.

l Finally, we update the screen to reflect the new positions of
our turret, bullets and fruit. Pygame’s draw method lets us
render all members of a sprite group in one line of code, but the
screen isn’t redrawn right away: the display.flip() method updates
the whole screen in one go, so that everything moves smoothly and
simultaneously. Finally, we check whether the game is over. As
the indentation shows, this is the end of the main code block, so
execution loops back to the while statement in section 11, and the
following lines are executed only after the game ends. These lines
load in a frame graphic, using Pygame’s convert_alpha method to
provide transparency, and render the final score text on top. We use
another “while” block to pause the game so that the player can read
the text. When they close the game window, Python exits the game.

The very last step is testing. This is especially important if you’ve been
using a different platform for development: by modern standards, the
Raspberry Pi is a very slow computer, and it runs a different OS to
your PC, so it’s vital to ensure that your game works properly and
runs at a playable speed before publishing it. If you’re working in
Windows, and plan to test your creation on native hardware only at
the end of the process - for example, if you're coding at home to run
on a Raspberry Pi at school - the easiest approach is to transfer the
folder containing your game using a USB memory stick and load it up
in Geany on the Raspberry Pi. It may take a little while to initialise,
but so long as your game doesn’t waste memory or try to carry out
excessively demanding computations, it should be fine.

www.pcpro.co.uk

®

	060_PCP216_ID python
	061_PCP216_ID python
	062_PCP216_ID python

