\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \euler \begin{gather*} \therefore \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \end{gather*} \begin{gather*} \text{let} \quad \cos(\theta) = x \\ 2x = e^{i\theta} + e^{-i\theta} \\ 2xe^{i\theta} = (e^{i\theta})^2 + 1 \\ (e^{i\theta})^2 + (-2x)e^{i\theta} + 1 = 0 \end{gather*} \begin{gather*} e^{i\theta} = \frac{-(-2x) \pm \sqrt{(-2x)^2 - 4}}{2} = x \pm \sqrt{x^2 - 1} \\ i\theta = \ln(x \pm \sqrt{x^2 - 1}) \\ \theta = -i\ln(x \pm \sqrt{x^2 - 1}) \end{gather*} \begin{gather*} \therefore \arccos(\theta) = -i\ln(\theta \pm \sqrt{\theta^2 - 1}) \end{gather*} \end{document}