\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \euler \begin{gather*} \therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \tan(\theta) = \frac{\sin(\theta)}{\cos{\theta}} = -\frac{i(-1 + e^{2i\theta})}{1 + e^{2i\theta}} \\ \cot(\theta) = \frac{1}{\tan(\theta)} = -\frac{1 + e^{2i\theta}}{i(-1 + e^{2i\theta})} \end{gather*} \begin{gather*} \text{let} \quad \cot(\theta) = x \\ x(i + ie^{2i\theta}) = -1(1 + e^{2i\theta}) \\ ix + ixe^{2i\theta} = -e^{2i\theta} - 1 \\ ixe^{2i\theta} + e^{2i\theta} = -1 - ix \\ (ix + 1)e^{2i\theta} = -1 - ix \\ e^{2i\theta} = -\frac{1 - ix}{1 + ix} \\ 2i\theta = \ln(\frac{x + i}{x - i}) \\ i\theta = \frac{1}{2}\ln(\frac{x + i}{x - i}) \\ \theta = -\frac{i}{2}\ln(\frac{x + i}{x - i}) \end{gather*} \begin{gather*} \therefore \text{arccot}(\theta) = -\frac{i}{2}\ln(\frac{\theta + i}{\theta - i}) \end{gather*} \end{document}