\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \euler \begin{gather*} \therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \tan(\theta) = \frac{\sin(\theta)}{\cos{\theta}} = -\frac{i(-1 + e^{2i\theta})}{1 + e^{2i\theta}} \end{gather*} \begin{gather*} \text{let} \quad \tan(\theta) = x \\ x(1 + e^{2i\theta}) = -i(-1 + e^{2i\theta}) \\ x + xe^{2i\theta} = i - ie^{2i\theta} \\ xe^{2i\theta} + ie^{2i\theta} = i - x \\ e^{2i\theta}(i + x) = i - x \\ e^{2i\theta} = \frac{i - x}{i + x} \\ 2i\theta = \ln(\frac{i - x}{i + x}) \\ i\theta = \frac{1}{2}\ln(\frac{i - x}{i + x}) \\ \theta = -\frac{i}{2}\ln(\frac{i - x}{i + x}) \end{gather*} \begin{gather*} \therefore \arctan(\theta) = -\frac{i}{2}\ln(\frac{i - \theta}{i + \theta}) \end{gather*} \end{document}