\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \begin{gather*} \text{By Euler's formula:} \\ e^{i\theta} = cos(\theta) + i\sin(\theta) \\ e^{-i\theta} = cos(\theta) - i\sin(\theta) \end{gather*} \begin{gather*} \therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{2i}{e^{i\theta} - e^{-i\theta}} \end{gather*} \begin{gather*} \text{let} \quad \csc(\theta) = x \\ \frac{2i}{x} = e^{i\theta} - e^{-i\theta} \\ \frac{2i}{x}e^{i\theta} = (e^{i\theta})^2 - 1 \\ (e^{i\theta})^2 + (-\frac{2i}{x})e^{i\theta} - 1 = 0 \end{gather*} \begin{gather*} e^{i\theta} = \frac{-(\frac{2i}{x}) \pm \sqrt{(\frac{2i}{x})^2 - 4(1)(-1)}}{2} = x^{-1}i \pm \sqrt{1 - x^2} \\ i\theta = \ln(x^{-1}i \pm \sqrt{1 - x^2}) \\ \theta = -i\ln(x^{-1}i \pm \sqrt{1 - x^2}) \end{gather*} \begin{gather*} \therefore \text{arccsc}(\theta) = -i\ln(i\theta^{-1} \pm \sqrt{1 -\theta^2}) \end{gather*} \end{document}