\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \euler \begin{gather*} \therefore \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{2}{e^{i\theta} + e^{-i\theta}} \end{gather*} \begin{gather*} \text{let} \quad \sec(\theta) = x \\ x(e^{i\theta} + e^{-i\theta}) = 2 \\ e^{i\theta} + e^{-i\theta} = \frac{2}{x} \\ (e^{i\theta})^2 + 1 = \frac{2}{x}e^{i\theta} \\ (e^{i\theta})^2 + (-\frac{2}{x})e^{i\theta} + 1 = 0 \end{gather*} \begin{gather*} e^{i\theta} = \frac{-(-\frac{2}{x}) \pm \sqrt{(-\frac{2}{x})^2 - 4}}{2} = x^{-1} \pm \sqrt{x^{-2} - 1} \\ i\theta = \ln(x^{-1} \pm \sqrt{x^{-2} - 1}) \\ \theta = -i\ln(x^{-1} \pm \sqrt{x^{-2} - 1}) \end{gather*} \begin{gather*} \therefore \text{arcsec}(\theta) = -i\ln(\theta^{-1} \pm \sqrt{\theta^{-2} - 1}) \end{gather*} \end{document}