\documentclass{../style} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \begin{gather*} \text{By Euler's formula:} \\ e^{i\theta} = cos(\theta) + i\sin(\theta) \\ e^{-i\theta} = cos(\theta) - i\sin(\theta) \end{gather*} \begin{gather*} \therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \end{gather*} \begin{gather*} \text{let} \quad \sin(\theta) = x \\ 2ix = e^{i\theta} - e^{-i\theta} \\ 2ie^{i\theta}x = (e^{i\theta})^2 - 1 \\ (e^{i\theta})^2 + (-2ix)e^{i\theta} - 1 = 0 \end{gather*} \begin{gather*} e^{i\theta} = \frac{-(-2ix) \pm \sqrt{(-2ix)^2 - 4(1)(-1)}}{2} = ix \pm \sqrt{1 - x^2} \\ i\theta = \ln(ix \pm \sqrt{1 - x^2}) \\ \theta = -i\ln(ix \pm \sqrt{1 - x^2}) \end{gather*} \begin{gather*} \therefore \arcsin(\theta) = -i\ln(i\theta \pm \sqrt{1 -\theta^2}) \end{gather*} \end{document}