the-honk/languages/c++/code/squareForm.cc
2024-10-09 18:02:43 +01:00

92 lines
No EOL
2.2 KiB
C++

#include <iostream>
double power(double base, double exponent) {
double out = base;
for (int i = 1; i < exponent; i++) {
out *= base;
}
return out;
}
// Euclid algorithm
int greatestCommonDivisor(int a, int b) {
int currentA = a;
int currentB = b;
bool divisorFound = false;
while (currentA != currentB) {
if (currentA > currentB) {
currentA -= currentB;
}
if (currentB > currentA) {
currentB -= currentA;
}
}
return currentA;
}
// Simplify and then format a fraction
std::string formatFraction(int numerator, int denominator) {
int gcd = greatestCommonDivisor(numerator, denominator);
int n = numerator / gcd;
int d = denominator / gcd;
if (d == 1) {
return std::to_string(n);
} else {
// Fraction unicode
return std::to_string(n) + "\u2044" + std::to_string(d);
}
}
// Format a double by cutting off as many trailing zeros as possible
std::string formatDouble(double input) {
std::string output = std::to_string(input);
int pointIndex = output.find_last_of('.');
int firstZeroIndex = output.find_last_not_of('0') + 1;
if (firstZeroIndex - 1 == pointIndex) {
output.erase(firstZeroIndex - 1, std::string::npos);
} else {
output.erase(firstZeroIndex, std::string::npos);
}
return output;
}
// ax² + b^x + c^x -> a(x + p) + q
std::string completeTheSquare(double a, double b, double c) {
// Calculate relevant values
double p = b / (2 * a);
double q = c - (power(b, 2) / 4 * a);
std::string output = "(x";
// Add the p value
if (p != 0) {
std::string sign = p > 0 ? "+" : "-";
output += " " + sign + " " + formatFraction(b, 2 * a) + "";
} else {
output += "";
}
// Add the q value
if (q != 0) {
std::string sign = q > 0 ? "+" : "-";
output += " " + sign + " " + formatDouble(q);
}
// Add the coefficient if relevant
if (a > 1) {
output.insert(0, formatDouble(a));
}
return output;
}
int main() {
std::cout << completeTheSquare(1, 2, 5);
}