the-honk/maths/trigometric functions/csc.tex

33 lines
991 B
TeX
Raw Normal View History

2024-10-09 17:02:46 +00:00
\documentclass{../style}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\begin{gather*}
\text{By Euler's formula:} \\
e^{i\theta} = cos(\theta) + i\sin(\theta) \\
e^{-i\theta} = cos(\theta) - i\sin(\theta)
\end{gather*}
\begin{gather*}
\therefore \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} \\
\csc(\theta) = \frac{1}{\sin(\theta)} = \frac{2i}{e^{i\theta} - e^{-i\theta}}
\end{gather*}
\begin{gather*}
\text{let} \quad \csc(\theta) = x \\
\frac{2i}{x} = e^{i\theta} - e^{-i\theta} \\
\frac{2i}{x}e^{i\theta} = (e^{i\theta})^2 - 1 \\
(e^{i\theta})^2 + (-\frac{2i}{x})e^{i\theta} - 1 = 0
\end{gather*}
\begin{gather*}
e^{i\theta} = \frac{-(\frac{2i}{x}) \pm \sqrt{(\frac{2i}{x})^2 - 4(1)(-1)}}{2} = x^{-1}i \pm \sqrt{1 - x^2} \\
i\theta = \ln(x^{-1}i \pm \sqrt{1 - x^2}) \\
\theta = -i\ln(x^{-1}i \pm \sqrt{1 - x^2})
\end{gather*}
\begin{gather*}
\therefore \text{arccsc}(\theta) = -i\ln(i\theta^{-1} \pm \sqrt{1 -\theta^2})
\end{gather*}
\end{document}