the-honk/languages/python/calculators/readme.md
2024-10-09 18:02:42 +01:00

43 lines
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div align="center">
### Babylonian Square Root
<img src="https://latex.codecogs.com/svg.image?\dpi{100}%20\%20x_0%20\approx%20\sqrt{S}%20\\x_{n%20+%201}%20=%20\frac{x_n%20+%20\frac{S}{x_n}}{2}%20\\\sqrt{S}%20=%20\displaystyle%20\lim_{n%20\to%20\infty}x_n" height="250" />
#### LaTeX
```
x_0 \approx \sqrt{S} \\
x_{n + 1} = \frac{x_n + \frac{S}{x_n}}{2} \\
\sqrt{S} = \displaystyle \lim_{n \to \infty}x_n
```
### Karatsuba Algorithm
[Wikipedia](https://en.wikipedia.org/wiki/Karatsuba_algorithm)
[An amazing video on the topic](https://youtu.be/cCKOl5li6YM)
```
function karatsuba (num1, num2)
if (num1 < 10) or (num2 < 10)
return num1 × num2 /* fall back to traditional multiplication */
/* Calculates the size of the numbers. */
m = min (size_base10(num1), size_base10(num2))
m2 = floor (m / 2)
/* m2 = ceil (m / 2) will also work */
/* Split the digit sequences in the middle. */
high1, low1 = split_at (num1, m2)
high2, low2 = split_at (num2, m2)
/* 3 recursive calls made to numbers approximately half the size. */
z0 = karatsuba (low1, low2)
z1 = karatsuba (low1 + high1, low2 + high2)
z2 = karatsuba (high1, high2)
return (z2 × 10 ^ (m2 × 2)) + ((z1 - z2 - z0) × 10 ^ m2) + z0
```
</div>